
Lecture 12 (Generating function)

In counting problems, we are often interested in counting the number of objects of ‘size n’,
which we denote by an. By varying n, we get different values of an. This gives a sequence
of real numbers

a0, a1, a2, . . .

from which we can define a power sequence

G(x) = a0 + a1x+ a2x
2 + . . .

The G(x) is called the generating function for the sequence a0, a1, a2, . . .

We see some elementary applications of generating functions. Consider the following exam-
ple.

Example 1: Find the coefficient of x17 in the expansion of (1 + x5 + x7).

Solution: The only way to form an x17 term is to gather two x5 and one x7 . Since there are
20C2 = 190 ways to choose two x5 from the 20 multiplicands and 18C1 = 18 ways to choose
one x7 from the remaining 18 multiplicands, the answer is 190× 18 = 3420.

Let us describe the above problem in another way.

Suppose there are 20 bags, each containing a 5 coin and a 7 coin. If we can use at most one
coin from each bag, in how many different ways can we pay 17, assuming that all coins are
distinguishable (i.e. the 5 coin from the first bag is considered to be different from that in
the second bag, and so on)?

It should be quite clear that the answer is again 3420. To pay 17, one must use two 5 coins
and one 7 coin. There are 20C2 = 190 ways to choose two 5 coins from the 20 bags, and 18
ways to choose a 7 coin from the remaining 18 bags.

Using the notations we introduced at the very beginning, we could say that a17 = 3420.

1 Techniques for Computation

Let us once again give the definition of a generating function before we proceed.

Definition. Given a sequence a0, a1, a2, . . ., we define the generating function of the sequence
{an} to be the power series

G(x) = a0 + a1x+ a2x
2 + . . .

Let us look at a few examples.

Example 2: Find the generating functions for the following sequences. In each case, try to
simplify the answer.
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1. 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, . . .

2. 1, 1, 1, 1, 1, . . .

3. 1, 3, 3, 1, 0, 0, 0, 0, . . .

4. 2005C0,
2005C1,

2005C2, . . . ,
2005C2005, 0, 0, 0, 0, . . .

Solution.
1. The generating function is

G(x) = 1 + x+ x2 + x3 + x4 + x5 =
1− x6

1− x

2. The generating function is

G(x) = 1 + x+ x2 + x3 + x4 + . . . .

When |x| < 1, G(x) = 1
1−x

.

3. The generating function is

G(x) = 1 + 3x+ 3x2 + 1 = (1 + x)3.

4. The generating function is

G(x) =2005 C0 +
2005 C1x+2005 C2x

2 + . . .+2005 C2005x
2005 = (1 + x)2005.

Dealing with computations of generating functions, we are particularly interested with two
things, namely, whether the generating function can be written in closed form and whether
we can find the coefficient of a certain power of x easily. For instance, in the above example,
G(x) = 1 + x+ x2 + x3 + x4 + . . . . is not a closed form while G(x) = 1

1−x
is.

The reason for trying to put a generating function in the closed form is as follows: In the
more advanced theory of generating functions, we will find that certain combinations of prob-
lems correspond to certain operations (e.g., addition, multiplication, or more complicated
operations) on generating functions. If we can find a generating function in closed form, the
computations can be greatly simplified and easily carried out.

On the other hand, we are interested in knowing the coefficient of a certain power of x

because, as we have remarked at the very beginning, it often refers to the number of objects
of size n, which is usually the thing we wish to find in counting problems.

However, if a generating function is given in closed form, ingenious tricks are sometimes
required to determine certain coefficients. The following example illustrates some common
tricks.

Example 3: For each of the following, find the coefficient of x2005 in the G(X).

1. G(x) = (1− 2x)5000
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2. G(x) = 1
1+3x

3. G(x) = 1
(1+5x)2

Solution.
1. By the binomial theorem, we have

G(x) = 1−5000 C1(2x) +
5000 C2(2x)

2 − . . .−5000 C4999(2x)
4999 + (2x)5000.

Thus, the coefficient of x2005 is −220055000C2005.

2. Recalling the formula for the sum to infinity of a geometric series, we have (noting once
again that everything is dealt with formally, ignoring questions of convergence)

G(x) =
1

1− (−3x)
= 1 + (−3x) + (−3x)2 + . . .

Thus, the coefficient of x2005 is −32005.

3. Note that
1

1 + 5x
= 1− 5x+ 52x2 − 53x3 + . . .

Hence,
G(x) = (1− 5x+ 52x2 − 53x3 + . . .)(1− 5x+ 52x2 − 53x3 + . . .).

To form an x2005 term, we can multiply 1 with −52005 x2005, −5x with 52004 x2004, 52x2 with
−52003x2003 and so on, and finally −52005x2005 with 1. There are altogether 2006 products,
each equal to −52005x2005. Thus the coefficient of x2005 is −2006× 52005.

The technique used in the above example is rather ‘ad-hoc’ in nature. It will not work if
the power 2 is increased to higher powers. To deal with higher powers, we shall need an
extended version of the binomial theorem. For this purpose, we attempt to generalize the
binomial theorem for positive integral indices. We begin by extending the usual notion of
binomial coefficients to non-integer values.

Definition: For any real number n and positive integer k, we define the extended binomial
coefficient nCk by

nCk =
n(n− 1)(n− 2) . . . (n− k + 1)

k!

Also, define nC0 = 1 for any real number n.

Clearly, if n is a positive integer with n ≥ k, then the above extended binomial coefficient
agrees with the usual binomial coefficient. Also, if n and k are positive integers with n < k,
then we have nC0 = 0. This is natural from a combinatorial point of view: if n < k, there is
no way to choose k different objects from a collection of n objects. With the notion of the
extended binomial coefficients, we can state the extended binomial theorem as follows.
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Extended Binomial Theorem: For any real number n, we have

(1 + x)n =n C0 +
n C1x+n C2x

2 + · · · .

Again, if n is a positive integer, we see that the extended binomial theorem agrees with the
usual binomial theorem by noting that nCk = 0 when n < k.

Since we often have to compute extended binomial coefficients of the form nCk where n is
a negative integer, it is useful to relate the extended binomial coefficients with the usual
binomial coefficients. We have the following.

Theorem. For positive integers n and r, we have

−nCr = (−1)r n+r−1Cr.

Sometimes, we also need the technique of partial fraction decomposition in the computation,
as the following example shows.

Example 4. What is the coefficient of x2005 in the generating function G(x) = 1
(1−x)2(1+x)2

?

Solution. Let 1
(1−x)2(1+x)2

= A
1−x

+ B
(1−x)2

+ C
1+x

+ D
(1+x)2

.

This gives A = B = C = D = 1
4
.

It follows that

G(x) =
1

4
[(1− x)−1 + (1− x)−2 + (1− x)−1 + (1− x)−2].

Thus the coefficient of x2005 is 1
4
(−−1C2005 −−2 C2005 +

−1 C2005 +
−2 C2005) = 0.

Finally, for those who know calculus, the following two examples illustrate some further
computation techniques in dealing with generating functions.

Example 5. Find the generating functions of the following sequences in closed form.

1. 1, 2, 3, 4, 5, 6, 7

2. 0, 1,−1
2
, 1
3
,−1

4
, . . .

Solution. If G(x) = a0 + a1x+ a2x
2 + ·,

Then G
′
(x) = a1 + 2a2x+ 3a3x

2 + · · · .

The same is true for integration in place of differentiation.

1. Now G(x) = 1 + 2x+ 3x2 + 4x3 + · · · = d
dx
(x+ x2 + x3 + · · · ) = d

dx
( x
1−x

) = 1
(1−x)2

.

One can verify the above from binomial expansion also.

2. G(x) = x− 1
2
x2 + 1

3
x3 − 1

4
x4 + · · · =

∫
(1− x+ x2 − x3 + · · · )dx =

∫
dx
1+x

= ln(1 + x) + C

To find the constant C, we put in x = 0 to get C = G(0) = a0 = 0.
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Hence the answer is G(x) = ln(1 + x).

Example 5. Find the coefficient of x2005 for each of the following generating functions.

1. G(x) = ln(1− x)

2. G(x) = sinx

Solution. 1. We have G(x) =
∫
− 1

1−x
dx = C − x− x2

2
− x3

3
− · · ·

where C = G(0) = 0. From the above expression, we see that the coefficient of x2005 is − 1
2005

.

2. Let G(x) = a0 + a1x+ a2x
2 + · · · . Setting x = 0, we get a0 = 0.

Now differentiating G(x), we get

cosx = a1 + 2!a2x+ 3!x2 + · · ·

Again setting x = 0, give a2 = 0. Continuing this process, we see that −1 = 3!a3, 0 = 4!a4,
1 = 5!a5, 0 = 6!a6, −1 = 6!a6, 0 = 8!a8, and son on. Since 2005 = 1 (mod) 4, the coefficient
of x2005 = 1

2005!
.

2 Applications of Generating Functions

Some well-known results in combinatorics can be reproduced by means of generating func-
tions, as the following examples show.

Example. There are 50 students in a class. How many ways are there to select 6 students
to represent in the International Math Olympiad?

Solution. Each student is either selected or not selected. Hence each student contributes
a factor of 1 + x to the generating function, where the term 1 (i.e. x0 ) refers to the case
when the student is not selected (i.e. the student occupies 0 place) while the term x (i.e.
x1) refers to the case when the student is selected (i.e. the student occupies 1 place). Since
there are 50 students, the generating function is

(1 + x)50.

Since 6 students are to be selected, the answer is the coefficient of x6 in the G(x), which,
according to the binomial theorem, is 50C6 . This, of course, agreed with what we would
have obtained without using generating functions.

It is worth noting how the generating function is formed. Basically, it is formed by a sequence
of ′ +′ s and ′ ×′ s, corresponding to a sequence of ‘OR’s and ‘AND’s, very much like how
counting problems are typically formulated. For each student, he is either selected OR not
selected, so each student contributes a factor of 1 + x. Now we need to do the same for the
1st student AND the 2nd student AND the 3rd student AND so on. That’s why we multiply
50 copies of 1 + x together to form the generating function.

Example. There are 30 identical souvenirs, to be distributed among the 50 IMO trainees,
and each trainee may get more than one souvenir. How many ways are there to distribute
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the 30 souvenirs among the 50 trainees?

Solution. Each student may get 0 OR 1 OR 2 OR ... souvenirs, thus contributing a factor
of 1 + x+ x2 + · · · . Since there are 50 students, the generating function is

G(x) = (1 + x+ x2 + · · · )50 = (
1

1− x
)50 = (1− x)−50

As there are 30 souvenirs, the answer is the coefficient of x30 in G(x), which, according to
the extended binomial theorem, is equal to −50C30 =

79 C30.

Note. One may argue that the term 1+x+x2+ · · · should be replaced by 1+x+x2+· · ·+x30

in the above generating function because each student may get at most 30 souvenirs. It turns
out that this modification will not affect the final outcome, and the details are left as an
exercise. In view of this, we will simply use 1 + x + x2 + · · · most of the time because it is
easier to handle.

Using the same idea employed in the previous examples, we can solve more complicated
counting problems using generating functions, as can be seen in the following examples.

Example. How many integer solutions to the equation a+ b+ c = 6 satisfying −1 ≤ a ≤ 2

and 1 ≤ b, c ≤ 4?

Solution. The generating function is

G(x) = (x−1 + x0 + x1 + x2)(x1 + x2 + x3 + x4)2 = x(1 + x+ x2 + x3)3 = x(
1− x4

1− x
)3

= x(1− 3x4 + 3x8 − x12)(1− x)−3 = (x− 3x5 + 3x9 − x13)(1− x)−3.

The answer is the coefficient of x6 in the G(x). To get an x6 term, we can multiply x with
the x5 term in (1 − x)−3, as well as multiply −3x5 with the x term in (1 − x)−3. By the
extended binomial theorem, the coefficient of x5 and x in (1 − x)−3 are −−3C5 and −−3C1

respectively. Hence the answer is −−3C5 − 3(−−3C1) = 12.

Example. In a country there are coins of denominations Rs. 2, Rs. 3, Rs. 5, and Rs. 7.
How many different ways are there to pay exactly Rs. 10?

Solution. The Rs. 2 coins may contribute a sum of 0, 2, 4, · · · , thus leading to the factor
1 + x2 + x4 + · · · . Using the same idea for the 3, 5 and 7 coins, the generating function is
given by

G(x) = (1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · )(1 + x5 + x10 + · · · )(1 + x7 + x14 + · · · )

=
1

1− x2
.

1

1− x3
.

1

1− x5
.

1

1− x7

The answer is the coefficient of x10 in G(x).
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3 Solving Recurrence Relations

Given a recurrence relation, one of the common ways to solve for the general term of a
sequence is to use the method of characteristic equations. Here we will see how generating
functions may be employed as an alternative way in solving recurrence relations.

For each sequence, we can form a generating function which may be regarded as an ‘infinite
polynomial’. If a recurrence relation is given, we can possibly reduce this ‘infinite polynomial’
to a finite one, so that we can get the generating function in closed form. Consequently the
coefficient of a general term (i.e. the general term of the sequence) can be found. The idea
is more or less the same as that employed in deriving the sum of a geometric series.

Example. Using generating functions, find an in terms of n in each of the following cases.

1. a0 = 2 and an+1 = 3an for n ≥ 0

2. a0 = 1, a1 = 2, and an+2 = 5an+1 − 4an for n ≥ 0

Solution. In each case, we let G(x) be the generating function for the given sequence {an}.

1. We have
G(x) = a0 + a1x+ a2x

2 + · · ·

This gives
3x×G(x) = 3a0x+ 3a1x

2 + 3a2x
3 + · · ·

Then
(1− 3x)G(x) = a0 + (a1 − 3a0)x+ (a2 − 3a1)x

2 + · · ·

Since a0 = 2 and an+1 = 3an for n ≥ 0, we have (1− 3x)G(x) = 2, i.e.

G(x) =
2

1− 3x
= 2[1 + (3x) + (3x)2 + (3x)3 + · · · ].

In this way, we see that the coefficient of xn in G(x) is an = 2.3n, so that an = 2.3n for all n,
as we would expect since {an} is in fact a geometric sequence with first term 2 and common
ratio 3.

2. Similarly as above, we have

G(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·

−5xG(x) = −5a0x− 5a1x
2 − 5a2x

3 + · · ·

4x2G(x) = 4a0x
2 + 4a1x

2 + · · ·

Adding these three equations and using the initial conditions as well as the given recurrence
relation, we get

(1− 5x+ 4x2)G(x) = 1− 3x.
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Applying partial fraction decomposition, we have

G(x) =
1− 3x

1− 5x+ 4x2
=

2

3

(
1

1− x

)
+

1

3

(
1

1− 4x

)

=
2

3
[1 + x+ x2 + x3 + · · · ] + 1

3
[1 + (4x) + (4x)2 + (4x)3 + · · · ].

Thus the coefficient of xn in G(x) is 2
3
+ 1

3
.4n, so that an = 4n+2

3
.
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